Platonikos ERATOSTENES
Mathematik, Musiktheorie und Metaphysik
Der Philosoph und Mathematiker Theon von Smyrna zitiert zwei Stellen aus einem Werk des Eratosthenes mit dem Titel Platōnikós, das nicht erhalten ist. Zu welcher Literaturgattung der Platonikos gehörte, ist umstritten. Einige Forscher haben an einen Kommentar zu Platons Dialog Timaios gedacht, doch scheint sich Eratosthenes nicht auf eine Besprechung nur eines einzelnen Werkes Platons beschränkt zu haben. Oft wurde angenommen, es habe sich um einen Dialog gehandelt, in dem Platon als Hauptunterredner auftrat, doch müsste die Schrift dann nach antiker Gepflogenheit Platon und nicht Platonikos heißen. Wahrscheinlich ist Platonikos im Sinne von Platonikos logos (Schrift über Platon) zu verstehen. Es war wohl ein Handbuch, das einem breiteren Publikum den Zugang zu Platons Werken durch Klärung von Begriffen und Erläuterung schwieriger Passagen erleichtern sollte.[16]
Behandelt wurden in erster Linie mathematische Fragen; zu den erörterten Begriffen gehörten Abstand, Verhältnis, kontinuierliche und diskontinuierliche Proportion, mathematisches Mittel, Primzahl und Punkt. Im Mittelpunkt stand die Proportionenlehre, in der Eratosthenes den Schlüssel zur platonischen Philosophie sah. Mathematische Erkenntnis bedeutete für ihn zugleich philosophische. Das Hilfsmittel der Verhältnisgleichung („a verhält sich zu b wie c zu d“), die er „Analogie“ nannte, sollte auch zu außermathematischem Erkenntnisgewinn verhelfen. Er erstrebte generell Problemlösungen durch das Aufsuchen von Analogien im Sinne von Verhältnisgleichungen.[17] In der Proportion meinte er das verbindende Band der "mathematischen" Wissenschaften (Arithmetik, Geometrie, Astronomie, Musiktheorie) gefunden zu haben, da alle Aussagen dieser Wissenschaften letztlich auf Aussagen über Proportionen zurückführbar seien.
So wie die Eins der Ausgangspunkt (archḗ) und das Urelement (stoicheíon) der Zahlen und damit der Quantität ist und wie der Punkt das nicht auflösbare, nicht zurückführbare Element der Länge ist, ist für Eratosthenes die Gleichheit (als Urverhältnis 1 : 1) das Element und der Ursprung aller Verhältnisse und Proportionen. Die Zahlen entstehen durch Addition und die verschiedenen Verhältnisse durch Vergrößerung der Glieder des Ausgangsverhältnisses; die Linie hingegen kann nicht als Zusammenfügung einzelner Punkte hervorgebracht werden, da der einzelne Punkt keine Ausdehnung hat, sondern sie entsteht durch eine kontinuierliche Bewegung eines Punktes. Diese Auffassung wurde später von dem Skeptiker Sextus Empiricus kritisiert.
Für das mit Zirkel und Lineal unlösbare Problem der Würfelverdoppelung, das „Delische Problem“, schlug Eratosthenes eine mathematische Näherungslösung vor. Für die Primzahlforschung verwendete er einen Algorithmus, der es gestattet, aus der Menge aller ungeraden natürlichen Zahlen, die kleiner als eine vorgegebene Zahl oder ihr gleich sind, alle Primzahlen auszusondern. Diese Methode ist unter dem Namen Sieb des Eratosthenes bekannt. Er hat sie aber nicht – wie man früher glaubte – erfunden; sie war vielmehr bereits bekannt, von ihm stammt nur die Bezeichnung „Sieb“.[18]
Ein Nebenthema des Platonikos war die Musiktheorie, in der Eratosthenes die Proportionenlehre auf die Musik übertrug. Das gelang ihm so überzeugend, dass er in der Antike zu den bedeutendsten Autoritäten auf musikalischem Gebiet gezählt wurde. Der Gelehrte Ptolemaios überliefert die Berechnungen des Eratosthenes für das Tetrachord, die zeigen, dass er sich der „pythagoreischen“ Einstimmung bediente, die er verfeinerte. Eratosthenes kannte und berücksichtigte auch das System des Musiktheoretikers Aristoxenos. Wie er bei seinen Berechnungen vorging, teilt Ptolemaios allerdings nicht mit.
Ferner ging Eratosthenes im Platonikos auch auf Metaphysisches wie die Seelenlehre ein. Dabei vertrat er ebenso wie der Platoniker Krantor, von dem er wohl beeinflusst war, die Auffassung, die Seele könne nicht rein immateriell sein, sondern müsse auch etwas Körperhaftes an sich haben, denn sie halte sich ja in der Welt der sinnlich wahrnehmbaren Dinge auf; außerdem sei sie stets in einem Körper.[19] Dem liegt die Überlegung zugrunde, die Seele könne sinnlich wahrnehmbare Objekte nur erfassen, wenn sie eine entsprechende Disposition in ihrer eigenen Struktur aufweist. Demnach sei sie eine Mischung aus zwei Bestandteilen, einem unkörperlichen und einem körperhaften.[20]
Der spätantike Mathematiker Pappos erwähnt eine mathematische Schrift des Eratosthenes mit dem Titel Über Mittelglieder (Peri mesotḗtōn). Da dieses Werk sonst nirgends in antiken Quellen genannt ist, ist zu vermuten, dass es mit dem Platonikos identisch ist.[21] 1981 wurde eine mittelalterliche arabische Übersetzung eines Textes von „Aristanes“ (Eratosthenes) über mittlere Proportionale veröffentlicht.[22] Dabei handelt es sich aber nicht um das von Pappos erwähnte verlorene Werk Über Mittelglieder, sondern um einen auch im griechischen Originaltext erhaltenen angeblichen Brief des Eratosthenes an König Ptolemaios III. über die Würfelverdoppelung. Die Echtheit des Briefs ist umstritten.[23]
2017/k